球王会官方
联系人:张女士
电话:010-65661451 /1458
邮箱:sales@tianhongzhiye.com
地址:北京市朝阳区建华南路11号
当前位置:首页 > 产品中心

产品中心

球王会官方激光器、振镜等3D打印机核心元器件国产替代已在路上

发布时间:2024-03-23 03:39:35 来源:m6米乐网页版 作者:球王会官方网址
产品描述:

 

服务热线:400-8168-900
立即咨询

  南极熊导读:工业级3D打印(特别是金属)在中国发展得如火如荼,但是有没有一些“卡脖子”问题出现呢?

  在当下的先进制造领域,3D打印技术因其惊人的创新性和应用潜力备受瞩目。该技术的颠覆性优势不仅使得制造业重新定义了新的可能性,更在诸多领域展现了巨大的应用潜力。随着 3D打印技术的应用不断成熟,可以实现更加高效率的加工,精度方面也有突破。打印效率对于3D 打印技术的产业化可谓重中之重,通过近年来打印设备激光器数量增加、激光扫描系统速率提升、激光器功率增大、最大成型尺寸提升、出粉方式的升级、工艺规划软件的升级等技术迭代进步,金属 3D 打印设备的生产效率得到了长足的提升。

  适合3D打印用的国产激光器厂商包括:锐科激光、长飞光坊激光、杰普特激光、宝辰鑫(创鑫)激光、大族激光、公大激光、凯普林等

  适合3D打印用的国产振镜厂商:大族思特、菲镭泰克、汉邦激光(自研自用)、正时精控、世纪桑尼、鞍山精准、赛浦森、智博泰克等

  据南极熊统计,目前国产激光器和振镜应用比较多的领域包括齿科金属3D打印、鞋模/模具类金属3D打印等,它们的技术性指标要求相对较低,而且对成本极为敏感,国产元器件可以大幅降低成本,从而得到广泛应用。

  在提升打印效率和精度方面,3D打印装备上的核心元器件,例如激光器和振镜等发挥着举足轻重的作用。激光器发光后,通过场镜或者动态聚焦镜高度聚焦能力,和振镜的精准控制,共同铸就了金属3D打印技术的精密性和效率性。因此,深入了解相关核心元器件的功能和优势,对于探索金属3D打印技术的本质至关重要。

  △中国易加三维M1550金属3D打印机成型仓,打印尺寸可1550mm*1550mm*1000mm,16束激光正在同时扫描打印。使用的激光器和振镜都是进口

  激光是受激辐射产生的光,因方向性强、能量密度高等特点而具有高加工精度及速度优势,激光加工对传统加工方式不断替代。从产业链环节来看激光产业已形成较为完备的产业链分布。此外,3D 打印、精密加工、激光焊接及激光清先等细分领域发展,进一步拉动了激光行业需求的增长。作为激光产业的核心部件,激光器是产生激光的核心单元,它在设备中价值占比较高。

  目前,市面上用于3D打印的主流激光器的种类包括光纤激光器、固体激光器、半导体激光器、二氧化碳激光器,3D打印机会根据成型材料的不同匹配不同的激光器。然而激光器制造作为一个独立的产业,其不断的发展使它们与3D打印工艺的匹配也发生了很大变化。

  光固化用紫外激光器有很多类型,如早期的氦镉激光器(波长325nm,功率15-50mw)或氩离子激光器(波长351-365nm,功率100-500mw),这些激光器曾应用在初期的SLA设备上,激光束光斑大小为0.05-3mm。目前光固化普遍使用固体紫外激光器,输出波长可以稳定为355nm,输出功率接近800mw且可调,寿命明显增长,只需要更换激光二极管就可继续使用。

  激光烧结技术采用的是二氧化碳激光器,输出波长为10.6μm,功率可从几瓦到几万瓦,光束质量极高,常被用来加工非金属材料(对该波长具有很高的吸收率)。在激光烧结技术中,CO2激光器的功率选择几十瓦即可,光斑直径在0.4-0.5mm左右,可用来烧结尼龙、覆膜砂、陶瓷以及PS粉末等非金属材料。此外,早期的LOM也是采用CO2激光器进行轮廓切割。

  金属打印用激光器经历了几个发展阶段,主要有CO2激光器、YAG激光器以及光纤激光器。CO2激光器的本身输出波长很长,金属材料的吸收率较低,因此早期金属打印用的CO2激光器功率动辄几千瓦。YAG激光器能够输出1.06μm的波长,与金属的偶合效率高、加工性能良好,一台800W YAG激光器的有效功率相当于3KW CO2激光功率。后来随着光纤激光逐步被推向商业市场,YAG激光的弊端便不断显现出来,采用更加集成、电光转换率更高、性能更稳定的光纤激光便成为金属打印发展的一大趋势。

  目前,虽仍有较少YAG激光器用于金属打印,但绝对多数已被光纤激光占据市场。SLM用光纤激光输出波长通常为1.07μm,输出功率有300w、500w、1000w等几个级别,扫描光斑一般为80-150μm以内。

  在2023年的12月中旬,为了进一步了解国内激光器产业及技术的发展现状,南极熊曾对国内激光器行业的领航者杰普特进行了专访《》。杰普特负责人向南极熊表示,目前的激光器市场竞争十分激烈。尤其对于金属3D打印机来讲,它对激光器的要求要比切割焊接一类的要高很多:输出的光束质量,M2需要小于1.1,现在杰普特针对3D打印行业批量出货激光器普遍做到1.06-1.09。市面常见的激光器长时间功率浮动大约在3%-5%;但3D打印一般都会需要长时间工作,功率浮动要求在2%甚至1%以内,特别是如果单台金属机搭载2台或者4台激光器,每台都有一定的误差的话,打印出来的效果就会很差,一致性要求非常高。对于激光器下一代的技术更新,杰普特也进行了布局:(1)AOB激光器:激光输出光斑为环形,内外环激光独立可控,输出光斑单模/多模可调。相较目前主流500瓦激光器的方案,可以让金属3D打印的填充效率提升数倍。(2)多台激光器和多套振镜使用一部来控制,实现1拖4或者更多,提高响应速度和控制精度的同时也可以降低“多头”联调的调节难度。

  扫描振镜是一种用于激光加工领域的矢量扫描器件,具有小惯量、高速扫描、精准定位和闭环反馈控制等特点。它是由光学扫描头、电子驱动放大器和光学反射镜片组成,靠两个振镜反射激光,形成 XY 平面的运动,主要配套振镜控制系统使用,是一种专门用于激光加工领域的特殊的运动器件。它具有非常小的惯量,且在运动的过程中负载非常小,只有两个小的反射镜片,分别用不同的电机控制偏转,系统的响应非常快,具有高速扫描、精准定位和闭环反馈控制等特点。

  在3D打印场景中,振镜的跳转速度和精度至关重要,特别是在创建轻量化结构和支撑结构时,需要频繁的跳转和高精度,以确保打印表面的光洁度和精度。另外,由于3D打印采用逐层扫描,工件的累计加工时间相比于新能源电池焊接更长,因此对振镜的稳定性和发热控制要求相对较高。南极熊3D打印网是中国3D打印行业专业平台,观察到随着3D打印市场需求量的不断增长,应用于该行业的振镜年复合增长率预计将超过30%。

  从2000年到现在,振镜经历了多次的技术迭代,应用范围也在不断扩大。最初,国内应用主要集中在中低端市场,特别是打标行业。随着中国消费电子、半导体和光伏技术的崛起,具有更高速度和精度的高端振镜得到了更广泛的应用。

  激光加工控制系统是激光先进制造的核心,由运动控制软件和卡组成,整合多领域技术。其中,振镜系统通过振镜电机实现激光束精准偏转,应用于微纳加工领域,具备高速度和精度。相较于伺服系统,振镜控制系统速度更高、精度更高,适用于小幅面微纳加工。激光加工控制系统是激光加工设备的核心数控大脑,通过融合计算机、激光与光学、运动控制与自动化、视觉追踪等多领域先进技术,配套激光器、高精密振镜等部件实现激光先进制造需求,属于激光先进制造相融合的新一代信息技术领域产业。

  振镜控制系统是激光加工控制系统的一种,由振镜电机、激光反射镜片、控制驱动板组成。振镜控制系统将激光束入射到振镜,并通过计算机控制振镜的反射角度,从而实现激光束的偏转,使具有一定功率密度的激光聚焦点在打标材料上按所需的要求运动,从而在材料表面上留下永久的标记。振镜电机是一种特殊的摆动电机,其设计思路沿袭电流表的设计方法,振镜电机只能进行偏转运动,偏转角与电流成正比。振镜电机带动可旋转的低惯性镜片进行激光束的定位,并采用位置传感器和负反馈回路设计,充分保证振镜系统具备高水平的扫描速度和重复定位精度。相比于伺服控制系统,振镜控制系统在速度方面最高运动速度可达到3,600米/分钟以上,而伺服控制系统的最高运动速度通常不超过120米/分钟。在精度方面,振镜控制系统的精度要求在0.5um-10um之间,而伺服控制系统的精度要求略低,一般在50um左右。振镜控制系统具有高精度、高速度的特点,主要应用于幅面较小的微纳加工领域。而伺服控制系统适配大面积宏加工,被广泛用于大幅面的切割、焊。


tianhongzhiye.com
400-8168-900